Skip to main content Skip to main navigation menu Skip to site footer
Editorials
Published: 2021-06-19

p-Hacking as a Questionable Research Practice in Industrial and Organizational Psychology

University of Bucharest

References

  1. Agnoli, F., Wicherts, J. M., Veldkamp, C. L., Albiero, P., & Cubelli, R. (2017). Questionable research practices among Italian research psychologists. PloS One, 12(3), e0172792.
  2. https://doi.org/10.1371/journal.pone.0172792
  3. Banks, G. C., Rogelberg, S. G., Woznyj, H. M., Landis, R. S., & Rupp, D. E. (2016). Evidence on questionable research practices: The good, the bad, and the ugly. Journal of Business and
  4. Psychology, 31, 323-338. https://doi.org/10.1007/s10869-016-9456-7
  5. Brodeur, A., Cook, N., & Heyes, A. (2020). Methods Matter: P-Hacking and Publication Bias in Causal Analysis in Economics. America Economic Review, 110(11), 3634-60. https://doi.org/10.1257/aer.20190687
  6. Crede, M., & Harms, P. (2019). Questionable research practices when using confirmatory factor analysis. Journal of Managerial Psychology, 34(1), 18-30. https://doi.org/10.1108/JMP-06-2018-0272
  7. Efendic, E., & van Zyl, L. E. (2019). On reproducibility and replicability: Arguing for open science practices and methodological improvements at the South African Journal of Industrial Psychology. SA Journal of Industrial Psychology, 45(1), 1-10. http://doi.org/10.4102/sajip.v45i0.1607
  8. Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of p-hacking in science. PLoS Biol, 13(3), e1002106. https://doi.org/10.1371/journal.pbio.1002106
  9. John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological Science, 23(5), 524-532. https://doi.org/10.1177%2F0956797611430953
  10. Kepes, S., & McDaniel, M. A. (2013). How trustworthy is the scientific literature in industrial and organizational psychology?. Industrial and Organizational Psychology, 6(3), 252-268. https://doi.org/10.1111/iops.12045
  11. Kim, H. Y. (2015). Statistical notes for clinical researchers: Type I and type II errors in statistical decision. Restorative Dentistry & Endodontics, 40(3), 249-252. https://doi.org/10.5395%2Frde.2015.40.3.249
  12. Rife, S. C., Nuijten, M. B., Epskamp, S. (2016). statcheck: Extract statistics from articles and recompute p-values [web application]. Retrieved from http://statcheck.io
  13. Schönbrodt, F. D. (2016). p-hacker: Train your phackingskills! [web application]. Retrieved from http://shinyapps.org/apps/p-hacker/
  14. Schönbrodt, F. D. (2018). p-checker: One-for-all pvalue analyzer [web application]. Retrieved from http://shinyapps.org/apps/p-checker/
  15. Sengupta, S. (2020). An editorial perspective on the infamous COVID-19 studies retracted by Lancet and NEJM. Indian Journal of Ophthalmology, 68(7), 1247-1248. https://doi.org/10.4103%2Fijo.IJO_1853_20
  16. Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: context, process, and purpose. The American Statistician, 70(2), 129- 133. https://doi.org/10.1080/00031305.2016.1154108
  17. Woo, S. E., O'Boyle, E. H., & Spector, P. E. (2017). Best practices in developing, conducting, and evaluating inductive research. Human Resources Management Review, 27(2), 255-264. https://doi.org/10.1016/j.hrmr.2016.08.004

How to Cite

Cocoș, B. . (2021). p-Hacking as a Questionable Research Practice in Industrial and Organizational Psychology. Studia Doctoralia, 12(1), 1–3. https://doi.org/10.47040/sd/sdpsych.v12i1.119